Design Languages in 2010

Edward A. Lee \
Professor Y G
UC Berkeley

Panel Position Statement

Forum on Design Languages (FDL)
Frankfurt, Sept. 26, 2003

v
22
! R

L LU i ekl el

AR a2Vatele B
s -
(=t A)

Chess:
Center for Hybrid and Embedded Software Systems

Lt ! Hh &

R b ey BLIR |
-,,_thl- ¢

PRI ey : o

\\,| \ - DSP ;\.rstems -h'“‘-u.______
P I atfor‘ms "u‘ ccmmunil:alion\s EPETSTE., applications T

DE models synchmncu
 m— madels 7

A platformis a set \
of designs (the 1
rectangles at the .

actor-oriented models

7.

r'i?h‘r, e.g., the set of || e
i i I syntnesizable i 4
all x86 binaries).]
] | C4+ programs
) | |I VHDL programs 70

Mode/-based design || 1 we: program
'S SpeC|f|CGT|0n Of |-Il I \}'n:;llrljanj Javabrnecud!pmg%
designs in platforms || . eigrs
with useful modeling]]I| I o
proper‘.hes (e.g., || e B6 programs

Simulink block

|
diagrams for control | |
systems). l]

| silicon chips
|

W e ules

MO%IS chips Pa- 1.6GHE

MiCroprocessors

Platforms

applications

DSP SLES
:urmnumca‘t 5 systems

/)

Where the
Action Has Been:

Giving the red
platforms useful
modeling properties
(e.g. UML, MDA)

Getting from red
platforms to blue

Slimulink rmodels
7 models

{ pmgr.lms-

synithesizakble
VHOL programs

VHOL programs

actor-oriented models

86 pmgmns

=

: pmgram
ﬂanda‘d Javabyn:ude pmgrarns
. deslgm
FPGA configurations

platforms.
silicon chips S
Platforms \W e
Where the
Action Will Be:
Giving the red rinesiable

platforms useful
modeling properties
(via models of
computation)

Getting from red
platforms to blue
platforms.

VHOL programs

standard
cell
deslgns

Java byte code programs

®BE programs

—

MiCIoprocessons

silicon chips

Design Framework

A design framework is a collection of
platforms and realizable relations between
platforms where at least one of the
platforms is a set of physically realizable
designs, and for any design in a user
platform, the transitive closure of the
relations from that design includes at least
one physically realizable design.

In mode/-based design, a specificationis a
point in a platform with useful modeling
properties.

UC Berkeley, Edward Lee 5

Focus on Actor-Oriented Design

(vs. trying to give useful modeling properties to program-level designs)

- Object orientation:

What flows through
el an object is
data sequential control
r methods
call return
+ Actor orientation: What flows through
an object is
actor name streams of data
data (state)

- parameters ‘
Input data Output data

ports

UC Berkeley, Edward Lee 6

Examples of Frameworks with
Actor-Oriented Mechanisms

Simulink (The MathWorks)
Labview (National Instruments)
Modelica (Linkoping)
SystemC + Comm Libraries (Various)
VHDL, Verilog (Various)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
OCP, open control platform (Boeing)
+ Easyb (Boeing)
+ Port-based objects (U of Maryland)
+ I/0 automata (MIT)
+ Polis & Metropolis (UC Berkeley)
* Ptolemy & Ptolemy IT (UC Berkeley)

UC Berkeley, Edward Lee 7

Example of Actor-Oriented Design
(in this case, with a visual syntax)

. Director from a library
PTOlemy II example. defines component

T array =T 5o interaction semantics

miatriz stimate the spectrum of thre:
signal processing by three different techniques.

Synchronous Dataflow Modeling

communications Sinewave Spectrum

filtering AddSubtract This example illustrates SDF modeling, which
4 E is well-suited to signal processing. In SDF,

-] imsge processing

=4 spectrum components communicate using streams, but their
i .[epB Sinewave2 SmoothedPeriodogm production and consumption rates are fixed.
=l Because of these fixed rates, exiensive static
- [E=]iFFr analysis of the model is possible, enabling
e efficient code generation and optimization.
P g;f;:z;i:mwsm MaximumEntropySpgctrum
- [] Phaselinwrap »
SlTﬂ}hE mﬂ_?rij Seq.u::nceP\oner
Large, behaviorally-polymorphic Component
component library. Model of Computation:
Key idea. The model of computation is part of the * Messaging schema
framework within which components are embedded * Flow of control

rather than part of the components themselves. Thus, - Concurrency
components need to declare behavioral properties. UC Berkeley, Edward Lee 8

Contrast Actor Orientation
with Object Orientation

Actor oriented Object oriented

TextToSpeech

Text to Speech

. (i initialize(): void
textingy %}D p.Pesch ou notify(): void
isReady(): boolean
getSpeech(): double[]

actor-oriented interface definition says OO interface definition gives procedures
“Give me text and I'll give you speech” that have to be invoked in an order not

specified as part of the interface definition.

Identified problems with object orientation:
- Says little or nothing about concurrency and time
- Concurrency typically expressed with threads, monitors, semaphores
- Components tend to implement low-level communication protocols
- Re-use potential is disappointing
Actor orientation offers more potential for useful modeling
properties, and hence for model-based design.

UC Berkeley, Edward Lee 9

Actor Orientation vs. Object Orientation

+ Object Orientation
- procedural interfaces
- aclass is a type (static structure)
- type checking for composition
- separation of interface from implementation
- subtyping
- polymorphism This is a vision of the
future: Few actor-

. . oriented frameworks
Actor Orientation fully offer this view.

- concurrent interfaces Eventually, all will.
- a behavior is a type
- type checking for composition of behaviors

- separation of behavioral interface from implementation
- behavioral subtyping

- behavioral polymorphism

UC Berkeley, Edward Lee 10

Will Actor-Oriented Design Yield Better Designs?

Not necessarily.

"Why isn't the answer UML, or
XML, or IP, or something like
that?"

Direct quote from a high-
ranking decision maker at a
large embedded systems
company with global reach.

"New" is not
better than "good”

The Box, Eric Owen Moss

Mandating use of the wrong platform is far worse
than tolerating the use of multiple platforms.

UC Berkeley, Edward Lee 11

Source: Contemporary California Architects, P. Jodidio, Tascheh, 1995

Better Architecture is Enabled but not
Guaranteed by Actor-Oriented Design

- Understandable
concurrency

- Systematic
heterogeneity

* More re-usable
component libraries

Source: Kaplan McLaughlin Diaz, R. Rappaport, Rockport, 1998

\I m ‘ R

Two Rodeo Drive, Kaplan, McLaughlin, Diaz UC Berkeley, Edward Lee 12

